Lie algebra decompositions with applications to quantum dynamics
نویسنده
چکیده
Lie group decompositions are useful tools in the analysis and control of quantum systems. Several decompositions proposed in the literature are based on a recursive procedure that systematically uses the Cartan decomposition theorem. In this dissertation, we establish a link between Lie algebra gradings and recursive Lie algebra decompositions, and then we formulate a general scheme to generate Lie group decompositions. This scheme contains some procedures previously proposed as special cases and gives a virtually unbounded number of alternatives to factor elements of a Lie group.
منابع مشابه
Lie Algebra Decompositions with Applications to Quantum Dynamics Table of Contents List of Figures Figure 2.1 a Schematic Representation of the Khaneja Glaser Decomposition . . . 14
Lie group decompositions are useful tools in the analysis and control of quantum systems. Several decompositions proposed in the literature are based on a recursive procedure that systematically uses the Cartan decomposition theorem. In this dissertation, we establish a link between Lie algebra gradings and recursive Lie algebra decompositions, and then we formulate a general scheme to generate...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملTime-optimal decompositions in SU(2)
A connected Lie group G is generated by its two 1-parametric subgroups exp(tX), exp(tY ) if and only if the Lie algebra of G is generated by {X, Y }. We consider decompositions of elements of G into a product of such exponentials with times t > 0 and study the problem of minimizing the total time of the decompositions for a fixed element of G. We solve this problem for the group SU2 and describ...
متن کاملClassification of Lie Subalgebras up to an Inner Automorphism
In this paper, a useful classification of all Lie subalgebras of a given Lie algebraup to an inner automorphism is presented. This method can be regarded as animportant connection between differential geometry and algebra and has many applications in different fields of mathematics. After main results, we have applied this procedure for classifying the Lie subalgebras of some examples of Lie al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017